Formula Generator

Generate formulae and equations that can be copied to Microsoft Word

Type customised TeX code into the input area to generate the formula in the display box, or select the pre-defined formula category in the selection menu.
To copy the formulae into Microsoft Word:
  1. Right click on the formula
  2. Hover to 'Copy to Clipboard'
  3. Select 'MathML Code'
  4. Paste on the the Word document
Common Symbols
Matrix
Greek Letters
TeX Input
$$Right \ Click\ Here\ to\ Copy\ the\ MathML\ Code.$$

pure maths

Binomial series
$$(a+b)^n=a^n+{n \choose 1}a^{n-1}b+{n \choose 2}a^{n-2}b^2 + \cdots + {n \choose r}a^{n-r}b^r + \cdots + b^n$$
polynomial equation
$$y=ax^4+bx^3+cx^2+dx+e$$ $$y=ax^3+bx^2+cx+d$$ $$y=ax^2+bx+c$$
Solutions For Quadratic Equation
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}$$
Surface area of revolution
$$ S_x = 2 \pi \int y \sqrt{\bigl(1+ ({dy \over dx})^2 \bigr)} dx$$ $$ S_x = 2 \pi \int y \sqrt{({dx \over dt})^2 + ({dy \over dt})^2 } dt$$ $$ S_x = 2 \pi \int r sin\theta \sqrt{r^2 + ({dr \over d\theta})^2 } d\theta$$
Fourier Series
$$f(x) = a_0 + \sum_{n=1}^\infty \bigl( a_n cos({nx \pi \over L} + b_n sin({nx \pi \over L}) \bigr)$$ $$a_0 = \frac1{2L} \int_{-L}^L f(x) dx$$ $$a_n = \frac1{L} \int_{-L}^L f(x) cos({nx\pi \over L}) dx$$ $$b_n = \frac1{L} \int_{-L}^L f(x) sin({nx\pi \over L}) dx$$
Fourier transform
$$f(x) = \int_{-\infty}^\infty F(k) e^{2\pi ikx}dk$$
Differential equations
$${dy^5 \over dx^5} +{dy^4 \over dx^4} +{dy^3 \over dx^3} +{dy^2 \over dx^2} +{dy \over dx} = f(x)$$
Integration
$$\int sin^2\theta \ d\theta = {\theta \over 2} - \frac14 sin2\theta + C$$ $$\int cos^2\theta \ d\theta = {\theta \over 2} + \frac14 sin2\theta + C$$ $$\int sin\theta \ cos\theta \ d\theta = \frac12 sin^2\theta + C$$
Integrating factors
$${dy \over dx} +P(x)y=Q(x)$$ $${dy \over dx} =-P(x)y$$ $$\int {dy \over y} =\int -P(x) dx$$ $$ln|{y}| =\int -P(x) dx +c$$ $$y = e^{-\int P(x) dx +c}$$ $$y = Ce^{-\int P(x) dx }$$

statistics

Expectation (mean)
$$ E(X) = \mu = \int x f(x) dx$$
Variance
$$ Var(X) = \sigma^2 = \int (x-\mu)^2 f(x) dx = \int x^2 f(x) dx - \mu^2$$
the product moment correlation coefficient
$$r = {S_{xy} \over \sqrt{S_{xx}S_{yy}}} = {\sum(x_i-\overline x)(y_i-\overline y) \over \sqrt{\bigl(\sum(x_i-\overline x)^2\bigr)\bigl(\sum(y_i-\overline y\bigr)^2)}} = {\sum x_iy_i-{(\sum x_i)(\sum y_i) \over n} \over \sqrt{\bigl(\sum x_i^2 - {(\sum x_i)^2 \over n} \bigr)\bigl(\sum y_i^2 - {(\sum y_i)^2 \over n} \bigr)}}$$
The regression coefficient of y on x
$$ b = {S_{xy} \over S_{xx}} = {\sum(x_i-\overline x)(y_i-\overline y) \over \sum(x_i-\overline x)^2} $$
Residual Sum of Squares (RSS)
$$ RSS = S_{yy} - {(S_{xy})^2 \over S_{xx}} = S_{yy}(1-r^2)$$
Spearman’s rank correlation coefficient
$$ r_S = 1 - {6 \sum d^2 \over n(n^2-1)}$$

mass moment of inertia

thick-walled hollow sphere
$$I={2m\over5}({r_2^5-r_1^5\over r_2^3-r_1^3})$$
solid sphere
$$I=\frac25mr^2$$
hollow sphere
$$I=\frac23mr^2$$
solid rectangular plate
$$I_centre={1\over12}m(a^2+b^2)$$
thick-walled hollow cylinder (z is central axis)
$$I_z=\frac12m(r_1^2+r_2^2)$$ $$I_x=I_y={1\over12}m[3(r_1^2+r_2^2)+h^2]$$
solid cylinder
$$I_z=\frac12mr^2$$
thin-walled hollow cylinder
$$I=mr^2$$
Rod
$$I_centre={1\over12}mL^2$$ $$I_end={1\over3}mL^2$$
solid circular plate (z is central axis)
$$I_z=\frac12mr^2$$ $$I_x=l_y=\frac14mr^2$$
hollow circular plate (ring)
$$I_z=mr^2$$ $$I_x=l_y=\frac12mr^2$$

second moment of area

Parallel axis theorem
$$I_{x'}=Ix+Ad^2$$
filled rectangle with centroid at the origin (base b, height h)
$$I_x=\underset R\iint y^2dA=\int_{-{b\over 2}}^{{b\over 2}}\int_{-{h\over 2}}^{{h\over 2}}y^2dydx=\int_{-{b\over 2}}^{{b\over 2}}\frac13{h^3\over4}dx={bh^3\over12}$$ $$I_y=\underset R\iint x^2dA=\int_{-{b\over 2}}^{{b\over 2}}\int_{-{h\over 2}}^{{h\over 2}}x^2dydx=\int_{-{b\over 2}}^{{b\over 2}}hx^2dx={b^3h\over12}$$ polar coordinates $$J_z=I_x+I_y={bh^3\over12}+{hb^3\over12}={bh\over12}(b^2+h^2)$$
filled rectangle with vertex at the origin (base b, height h)
$$I_x={bh^3\over3}$$ $$I_y={b^3h\over3}$$
hollow rectangle with centroid at the origin (base b, height h, inner width b1, inner height h2)
$$I_x={bh^3-b_1h_1^3\over12}$$ $$I_y={b^3h-b_1^3h_1\over12}$$
annulus centered at origin (z is central axis)
$$I_{x,circle}=\underset R\iint y^2dA=\underset R\iint (rsin\theta)^2dA=\int_0^{2\pi}\int_0^r(rsin\theta)^2(rdrd\theta)=\iint (rsin\theta)^2dA=\int_0^{2\pi}\int_0^rr^3(sin^2\theta) rdrd\theta=\int_0^{2\pi}{r^4(sin^2\theta)\over4}d\theta={\pi\over4}r^4$$ polar coordinates $$I_{y,circle}=\underset R\iint r^2dA=\int_0^{2\pi}\int_0^rr^2(rdrd\theta)=\int_0^{2\pi}\int_0^rr^3drd\theta=\int_0^{2\pi}{r^4\over4}d\theta={\pi\over2}r^4$$ if it has inner radius r1 and outer radius r2 (change limits on intergral) $$I_{y,circle}=\underset R\iint r^2dA=\int_0^{2\pi}\int_{r_1}^{r_2}r^2(rdrd\theta)=\int_0^{2\pi}\int_{r_1}^{r_2}r^3drd\theta=\int_0^{2\pi}[{r_2^4\over4}-{r_1^4\over4}]d\theta={\pi\over2}(r_2^4-r_1^4)$$
filled circle
$$I_x=I_y=I_z={\pi\over4}r^4$$
filled ellipse (a along x, b along y)
$$I_x={\pi\over4}ab^3$$ $$I_y={\pi\over4}a^3b$$
filled regular hexagon with side length a
$$I_x=I_y={5\sqrt3\over16}a^4$$

dynamics

SUVAT
$$x=\bar v t$$ $$v=v_0+at$$ $$x=v_0t+\frac12at^2$$ $$v^2=v_0^2 +2ax$$ $$w=w_0+\alpha t$$ $$\theta =w_0t+\frac12at^2$$ $$w^2 =w_0^2+2\alpha\theta$$
motion equation
$$m {\ddot x} + c{\dot x} +kx =0$$ $$x(t)=ae^{\lambda t}$$ $$(m \lambda^2 + c \lambda^2 +k)ae^{\lambda t} =0$$ $$\lambda = {-c \pm \sqrt{c^2-4mk} \over 2m}$$ $$\lambda_{1,2} = - {c \over 2m} \pm \sqrt{{c \over 2m}^2 -{k \over 2m}}$$ $$\lambda_{1,2} = - \zeta \omega_n \pm \omega_n \sqrt{\zeta^2 -1}$$
Critical damping $$c_c = 2m \sqrt{\frac km} = 2m \omega_n = 2\sqrt{km}$$ $${c \over 2m} = {c \over c_c} \cdot {c_c \over 2m} = \zeta \omega_n$$ $$ \lambda_{1,2} = - \omega_n$$ $$x(t) = a_1 e^{-\omega _n t} + a_2 e^{-\omega _n t}$$ $$a_1 = x_o$$ $$a_2 = \dot x_0 + \omega_n x_0$$
Overdamped $$x(t) = a_1 e^{(- \zeta \omega_n + \omega_n \sqrt{\zeta^2 -1})} + a_2e^{(- \zeta \omega_n - \omega_n \sqrt{\zeta^2 -1})}$$ $$a_1 = {x_0 \omega_n (\zeta + \sqrt{\zeta^2 -1}) +\dot x_0 \over 2 \omega_n \sqrt{\zeta^2 -1}}$$ $$a_2 = {x_0 \omega_n (\zeta + \sqrt{\zeta^2 -1}) - \dot x_0 \over 2 \omega_n \sqrt{\zeta^2 -1}}$$
Underdamped $$x(t) = e^{- \zeta \omega_nt}(a_1 e^{i \omega_d t} + a_2e^{- i \omega_d t})$$ $$x(t) = Ae^{- \zeta \omega_nt} sin(\omega_d t + \phi)$$ $$\omega_d = \omega_n \sqrt{1 - \zeta^2}$$ $$A = {1 \over \omega_d } \sqrt{(\dot x_0 + \zeta \omega_n x_0)^2 + (x_0 \omega_d)^2}$$ $$\phi = tan^{-1 } ({x_0 \omega_d \over \dot x_0 + \zeta \omega_n x_0})$$
The Lagrange’s Equations $${d \over dt} ({\partial T \over \partial \dot q_j} ) - {\partial T \over \partial \dot q_j} + {\partial V \over \partial \dot q_j} = Q_j^{(n)}$$

structural (solid) mechanics

Radial and hoop stresses for thick cylinders
$$\sigma_r = A- {B \over r^2}$$ $$\sigma_\theta = A + {B \over r^2}$$
Radial and circumferential stresses for rotating discs
$$\sigma_r = A - {B \over r^2} + {3+\nu \over 8} \rho \omega^2 r^2$$ $$\sigma_r = A + {B \over r^2} - {1+3\nu \over 8} \rho \omega^2 r^2$$
Circular Plates of uniform thickness
deflection for a uniformly distributed normal load p, per unit area $${pr \over 2D} = {d \over dr}[\frac1r {d \over dr}(r {dz \over dr})]$$ $${d \over dr}[\frac1r {d \over dr}(r {dz \over dr})] = {F \over 2\pi D}$$ $$D = {Et^3 \over 12(1- \nu^2)}$$
Bending moments per unit length
$$M_r = -D [{d^2z \over dr^2} + {\nu \over r} {dz \over dr}]$$ $$M_\theta = -D [\nu {d^2z \over dr^2} + {1 \over r} {dz \over dr}]$$
Stress distribution
$$\sigma_r = {12M_r h \over t^3}$$ $$\sigma_\theta = {12M_\theta h \over t^3}$$
Force equilibrium relationships
$${\partial \sigma_{xx} \over \partial x} + {\partial \tau_{yx} \over \partial y} + {\partial \tau_{zz} \over \partial z} + f_x =0$$ $${\partial \sigma_{xy} \over \partial x} + {\partial \tau_{yy} \over \partial y} + {\partial \tau_{zy} \over \partial z} + f_y =0$$ $${\partial \sigma_{xz} \over \partial x} + {\partial \tau_{yz} \over \partial y} + {\partial \tau_{zz} \over \partial z} + f_z =0$$
Stress function
$$\nabla^2 \phi = {\partial^2 \phi \over \partial y^2} + {\partial^2 \phi \over \partial x^2}$$
Stress compatibility in 2D
$$({\partial^2 \over \partial x^2} + {\partial^2 \over \partial y^2})(\sigma_z + \sigma_y) = -\beta ({\partial f_x \over \partial x} + {\partial f_y \over \partial y})$$ $$\beta = 1+ \nu $$ $$ \beta = {1\over 1 - \nu}$$
Biharmonic operator in 2D
$$\nabla^4= {\partial^4 \over \partial x^4} + 2{\partial^4 \over \partial x^2 \partial y^2} + {\partial^4 \over \partial y^4}$$
Biharmonic operator in polar coordinates
$$({\partial^2 \over \partial r^2 } + \frac1r {\partial \over \partial r} + {1 \over r^2} {\partial^2 \over \partial \theta^2}) ({\partial^2 \phi \over \partial r^2 } + \frac1r {\partial \phi \over \partial r} + {1 \over r^2} {\partial^2 \phi \over \partial \theta^2}) = 0$$

fluid mechanics

Absolute pressure
$$P_{abs}=P_g+P_{atm}$$
Bernoulli's equation
$$P+\frac12 \rho(u^2+v^2+w^2)+\rho gz=constant$$
Hagen–Poiseuille equation
$$Q={(p_2-p_1)\pi r^4\over8L\mu}$$ $$\Delta P={8QL\mu\over\pi r^4}$$
Reynolds number
$$Re={\rho u D\over \mu}={uD\over\nu}$$
Continuity equation
$$\rho_1A_1v_1=\rho_2A_2v_2$$ $${\partial \rho \over \partial t}+\Delta\cdot(\rho\vec V)={\partial \rho \over \partial t}+{\partial \rho u\over \partial x}+{\partial \rho v\over \partial y}+{\partial \rho w\over \partial z}=0$$ $${\partial \rho \over \partial t}+\Delta\cdot(\rho\vec V)={\partial \rho \over \partial t}+{\partial (\rho u_r)\over \partial r}+{\rho u_r\over r}+\cfrac1r{\partial u_\theta \over \partial \theta} + {\theta \rho u_z\over \partial z}=0$$
3D Momentum Equation (Navier-Stokes Equations)
$$\rho({\partial u \over \partial t}+u{\partial u \over \partial x}+v{\partial u\over \partial y}+w{\partial u\over\partial z})=-{\partial \rho \over \partial x}+\mu({\partial^2 u \over \partial x^2}+{\partial^2 u \over \partial y^2}+{\partial^2 u \over \partial z^2})$$ $$\rho({\partial v \over \partial t}+v{\partial v \over \partial x}+v{\partial v\over \partial y}+w{\partial v\over\partial z})=-{\partial \rho \over \partial x}+\mu({\partial^2 v \over \partial x^2}+{\partial^2 v \over \partial y^2}+{\partial^2 v \over \partial z^2})$$ $$\rho({\partial w \over \partial t}+v{\partial w \over \partial x}+v{\partial v\over \partial y}+w{\partial v\over\partial z})=-{\partial \rho \over \partial x}+\mu({\partial^2 w \over \partial x^2}+{\partial^2 w \over \partial y^2}+{\partial^2 w \over \partial z^2})-\rho g$$ $$\rho({\partial w \over \partial t}+v{\partial w \over \partial x}+v{\partial w\over \partial y}+w{\partial w\over\partial z})=-{\partial \rho \over \partial x}+\mu({\partial^2 w \over \partial x^2}+{\partial^2 w \over \partial y^2}+{\partial^2 w \over \partial z^2})-\rho g$$
2D Momentum Equation (f_x(g) and f_y(g) are functions related to gravity)
$$\rho({\partial u \over \partial t}+u{\partial u \over \partial x}+v{\partial u\over \partial y})=-{\partial \rho \over \partial x}+\mu({\partial^2 u \over \partial x^2}+{\partial^2 u \over \partial y^2})+f_x(g)$$ $$\rho({\partial v \over \partial t}+u{\partial v \over \partial x}+v{\partial v\over \partial y})=-{\partial \rho \over \partial x}+\mu({\partial^2 v \over \partial x^2}+{\partial^2 v \over \partial y^2})+f_y(g)$$
Potential flow and stream function relationships
$$u={\partial \phi \over \partial x}={\partial \psi\over \partial y},\ v={\partial \phi \over \partial y}=-{\partial \psi\over \partial x}$$ $$u_r={\partial \phi \over \partial r}=\cfrac1r{\partial \psi\over \partial \theta},\ u_\theta=\cfrac1r {\partial \phi \over \partial \theta}=-{\partial \psi\over \partial r}$$
flow in pipes (circular)
$$u(r)=\cfrac1{4\mu}{\Delta P\over L}\cfrac{D^2}4(1-{4r^2\over D^2})$$ $$\tau_w={\Delta P \over L}\cfrac D4$$
Energy balance equation for an open system with multiple inlets and exits
$${dE_{CV} \over dt}=\dot Q+\dot W+\sum_i \dot m_i(h_i+\cfrac {V_i^2}2 +gz_i ) - \sum_e \dot m_e (h_e + \cfrac {V_e^2}2 +gz_e )$$
Thermodynamic relations for isentropic processes of ideal gases
$${T_2 \over T_1} = ({p_2 \over p_1})^{\gamma-1 \over \gamma}=({v_2 \over v_1})^{-(\gamma-1)}=({\rho_2 \over \rho_1})^{(\gamma-1)}$$
combination of first law of thermodynamics and perfect gas law
$${\gamma \over \gamma -1}\cfrac p \rho + \frac 12 q^2 = constant$$
speed of sound
$$c^2=\gamma RT$$
shock analysis (reference state, stagnation and sonic)
$$\cfrac {T_0}T = 1+\frac12 (\gamma -1)M^2$$ $$\cfrac p{p_0} = (1+\frac12 (\gamma -1)M^2)^\cfrac \gamma {\gamma - 1}$$ $$\cfrac \rho{\rho_0} = (1+\frac12 (\gamma -1)M^2)^\cfrac \gamma {\gamma - 1}$$
Rayleigh line
$${p_2 \over p_1} = {1+\gamma M_1^2 \over1+\gamma M_2^2}$$ $${T_2 \over T_1} = {1+\frac12(\gamma-1)M_1^2 \over 1+\frac12(\gamma-1)M_2^2}$$
Fanno line
$${p_2 \over p_1} ={M_2 \over M_1} = \Bigl({1+\frac12(\gamma-1)M_1^2 \over 1+\frac12(\gamma-1)M_2^2}\Bigr)^\frac12$$ $${M_2^2} = {1+\frac12(\gamma-1)M_1^2 \over \gamma M_1^2-\frac12(\gamma-1)}$$ $${\rho_2 \over \rho_1} ={\frac12(\gamma+1)M_1^2 \over 1+\frac12(\gamma-1)M_1^2}$$
Fanno and Rayleigh Flows
Duct flow
$${dM_2 \over M_2} =-{2(1+\frac12(\gamma-1)M^2) \over 1-M^2}{dA\over A}$$ $$T_c=T\Bigl(1+\frac12(\gamma-1)M^2\Bigr)$$ $${p_c\over p}=\Bigl(1+\frac12(\gamma-1)M^2\Bigr)^{\gamma\over \gamma-1}$$
Nozzles and exit flows
$${4fL_*\over D}= {1-M^2\over \gamma M^2}+{\gamma+1\over 2\gamma}log\Bigl({\frac12(\gamma+1)M^2 \over 1+\frac12(\gamma-1)M^2}\Bigr)$$ $${T_0 \over T_0^*} = {(\gamma+1)M^2\bigl(2+\frac12(\gamma-1)M^2\bigr) \over (1+\gamma M^2)^2}$$ $${A_0 \over A_0^*} = \frac1M \Bigl( {1+\frac12(\gamma-1)M^2 \over \frac12(\gamma+1)}\Bigr)^{\gamma+1\over2(\gamma-1)}$$

Contact Us


Please fill in the form below